Submit Manuscript  

Article Details


Application of Artificial Intelligence in Targeting Retinal Diseases

[ Vol. 21 , Issue. 12 ]

Author(s):

Francesco Saverio Sorrentino, Giuseppe Jurman, Katia De Nadai, Claudio Campa, Cesare Furlanello and Francesco Parmeggiani*   Pages 1208 - 1215 ( 8 )

Abstract:


Retinal diseases affect an increasing number of patients worldwide because of the aging population. Request for diagnostic imaging in ophthalmology is ramping up, while the number of specialists keeps shrinking. Cutting-edge technology embedding artificial intelligence (AI) algorithms are thus advocated to help ophthalmologists perform their clinical tasks as well as to provide a source for the advancement of novel biomarkers. In particular, optical coherence tomography (OCT) evaluation of the retina can be augmented by algorithms based on machine learning and deep learning to early detect, qualitatively localize and quantitatively measure epi/intra/subretinal abnormalities or pathological features of macular or neural diseases. In this paper, we discuss the use of AI to facilitate efficacy and accuracy of retinal imaging in those diseases increasingly treated by intravitreal vascular endothelial growth factor (VEGF) inhibitors (i.e. anti-VEGF drugs), also including integration and interpretation features in the process. We review recent advances by AI in diabetic retinopathy, age-related macular degeneration, and retinopathy of prematurity that envision a potentially key role of highly automated systems in screening, early diagnosis, grading and individualized therapy. We discuss benefits and critical aspects of automating the evaluation of disease activity, recurrences, the timing of retreatment and therapeutically potential novel targets in ophthalmology. The impact of massive employment of AI to optimize clinical assistance and encourage tailored therapies for distinct patterns of retinal diseases is also discussed.

Keywords:

Retinal diseases, macular complications, anti-VEGF drugs, retinal imaging, optical coherence tomography, artificial intelligence, machine learning, deep learning.

Affiliation:

Department of Surgical Sciences, Maggiore Hospital, Azienda USL Bologna, Bologna, Unit of Predictive Models for Biomedicine and Environment - MPBA, Fondazione Bruno Kessler, Trento, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Department of Surgical Specialties, Sant’Anna Hospital, Azienda Ospedaliero Universitaria di Ferrara, Ferrara, Unit of Predictive Models for Biomedicine and Environment - MPBA, Fondazione Bruno Kessler, Trento, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara



Read Full-Text article