Submit Manuscript  

Article Details


Towards Computational Models of Identifying Protein Ubiquitination Sites

[ Vol. 20 , Issue. 5 ]

Author(s):

Lidong Wang* and Ruijun Zhang   Pages 565 - 578 ( 14 )

Abstract:


Ubiquitination is an important post-translational modification (PTM) process for the regulation of protein functions, which is associated with cancer, cardiovascular and other diseases. Recent initiatives have focused on the detection of potential ubiquitination sites with the aid of physicochemical test approaches in conjunction with the application of computational methods. The identification of ubiquitination sites using laboratory tests is especially susceptible to the temporality and reversibility of the ubiquitination processes, and is also costly and time-consuming. It has been demonstrated that computational methods are effective in extracting potential rules or inferences from biological sequence collections. Up to the present, the computational strategy has been one of the critical research approaches that have been applied for the identification of ubiquitination sites, and currently, there are numerous state-of-the-art computational methods that have been developed from machine learning and statistical analysis to undertake such work. In the present study, the construction of benchmark datasets is summarized, together with feature representation methods, feature selection approaches and the classifiers involved in several previous publications. In an attempt to explore pertinent development trends for the identification of ubiquitination sites, an independent test dataset was constructed and the predicting results obtained from five prediction tools are reported here, together with some related discussions.

Keywords:

Protein ubiquitination, computational method, data collection, feature extraction, feature selection, prediction model.

Affiliation:

College of Science, Dalian Maritime University, Dalian, College of Science, Dalian Maritime University, Dalian

Graphical Abstract:



Read Full-Text article