Submit Manuscript  

Article Details


Application of Machine Learning Approaches for the Design and Study of Anticancer Drugs

Author(s):

Yan Hu, Yi Lu, Shuo Wang, Mengying Zhang, Xiaosheng Qu* and Bing Niu*   Pages 1 - 13 ( 13 )

Abstract:


Background: Globally the number of cancer patients and deaths are continuing to increase yearly, and cancer has, therefore, become one of the world's highest causes of morbidity and mortality. In recent years, the study of anticancer drugs has become one of the most popular medical topics. Objective: In this review, in order to study the application of machine learning in predicting anticancer drugs activity, some machine learning approaches such as Linear Discriminant Analysis (LDA), Principal components analysis (PCA), Support Vector Machine (SVM), Random forest (RF), k-Nearest Neighbor (kNN), and Naïve Bayes (NB) were selected, and the examples of their applications in anticancer drugs design are listed. Results: Machine learning contributes a lot to anticancer drugs design and helps researchers by saving time and is cost effective. However, it can only be an assisting tool for drug design. Conclusion: This paper introduces the application of machine learning approaches in anticancer drug design. Many examples of success in identification and prediction in the area of anticancer drugs activity prediction are discussed, and the anticancer drugs research is still in active progress. Moreover, the merits of some web servers related to anticancer drugs are mentioned.

Keywords:

Machine Learning (ML), anticancer drugs, Linear Discriminant Analysis (LDA), Principal components analysis (PCA), Support Vector Machine (SVM), Random forest (RF), k-Nearest Neighbor (kNN), Naïve Bayes (NB), Deep learning, Web servers

Affiliation:

School of Life Sciences, Shanghai University, Shanghai 200444, School of Life Sciences, Shanghai University, Shanghai 200444, School of Life Sciences, Shanghai University, Shanghai 200444, School of Life Sciences, Shanghai University, Shanghai 200444, National Engineering Laboratory of Southwest Endangered Medicinal Resources Development, Guangxi Botanical Garden of Medicinal Plants, 530023,Nanning, School of Life Sciences, Shanghai University, Shanghai 200444



Read Full-Text article